Tackling exascale systems for astrophysics

Thomas Padioleau1, Lou Roussel-Hard1, Edouard Audit1, Luc Dessart2, Yushan Wang1

1. Maison de la Simulation, CEA Paris-Saclay
2. Institut d'Astrophysique de Paris
Application context

- Phd thesis of L. Roussel-Hard advised by E. Audit and L. Dessart
- Multidimensional radiative hydrodynamics for supernovae
 - Study of local instabilities
 - Evolution of the Nickel 56 bubbles
 - Spectral characteristics of the ejecta
- Existing code Heracles
 - Fortran
 - CPU
 - Makefile
Heracles++ features

- 1D/2D/3D structured mesh
 - Cartesian geometry
 - Spherical geometry

- Hydrodynamics
 - Explicit finite volumes schemes, Godunov-types
 - MUSCL-Hancock second order reconstruction
 - HLL, HLLC, low-Mach approximate Riemann solvers
 - Equations of state
 - Perfect gas
 - Radiative gas

- Radiative transfer [WIP]
 - Hydrodynamics equation of state
 - reduced speed of light
 - implicit M1 model

- Gravity
 - Uniform
 - Point mass

- Arbitrary passive scalars
Technical choices

- Build system
 - CMake
- Language
 - C++17
 - Dynamic and static polymorphism
- Parallelization
 - MPI
 - Domain decomposition
 - Kokkos
 - One Kokkos::View per physical variable
 - parallel_for, parallel_reduce
 - Kokkos::MDRangePolicy
- I/O
 - PDI with HDF5
 - Simple in-situ computation

Kokkos::parallel_for("Parallel_for_example",
Kokkos::MDRangePolicy<Kokkos::Rank<3>>({{0, 0, 0}, {nx, ny, nz}}),
KOKKOS_LAMBDA(int i, int j, int k) {
 auto F_L = compute_FL(i,j,k);
 auto F_R = compute_FR(i,j,k);
 auto dv = compute_dV(i,j,k);
 U_new(i, j, k) = U(i, j, k) + dt/dv * (F_L - F_R) + dt * S(i, j, k);
});

Compact code: 7kLOC

Tackling exascale systems for astrophysics
User experience

- **MDRangePolicy**
 - Easy to use
 - Tiling not always needed
 - Useful to get a thread-private allocator for MDRangePolicy
 - Static: experiment on using Kokkos::View<double[ndim][2]>
 - Dynamic: ?

- **Difficulties to get vectorization**
 - Need aggressive inlining
 - Need loop unrolling due to inner loops over the number of dimensions

- **Usage of KOKKOS_CLASS_LAMBDA**
 - Some classes are not copyable
 - Warnings about classes not device-compatible

- **A Kokkos::View per physical variable**
 - API can be verbose → possibility to have incorrect order
 - A lot of metadata is duplicated, can it impact performance?

- **MPI device-aware**
 - Difficulty to know if the MPI implementation supports it
Thank you for your attention!